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I. INTRODUCTION

This report describes a major modification to the bounce-averaged
Fokker-Planck code of Cutler et a].] The new version of the code is written
in conservation form which results in the line density being conserved exactly
except at phase space boundaries. The notation and procedure for writing the
code in conservation form closely follows the work of Mirin on the square well
code Hybrid 11,2 and Kerbel and McCoy on their bounce-average code CQL.3

Much of the original code has been preserved, and the input is the same
as before; old input files should run on the new version. The major
modifications to the code have occurred in subroutines COEF, IADVANCE, and
RFTERMS. A new subroutine, FLUX, has been added to compute the flux across
loss boundaries. The conservation code is called BACON11 with the last two
numbers denoting the version. It can be obtained from FILEM on the MFECC
computer system by typing

FILEM 356 RDS .BAFP BACON11 SLIB UPDATEC

The latter two library files are used in compiling and executing the code.

The motivation for rewriting the code was suspicious behavior of the
original code for some problems. Perhaps most dramatic of these was the
density runaway documented and studied by LoDestro.4 She found that for a
confining potential and a passing Maxwellian boundary condition, the code would
not evolve to an isotropic Maxwellian, but rather the density would increase to
a large value, producing a very non-Maxwellian distribution. The new version
of the code does yield the expected isotropic Maxwellian.

The conservation version of the code is closely related to the finite
difference code CQL written by Kerbel and McCoy.3 Both are written in
conservation form in v, coordinates. Some of the differences are as
follows: BACON11 allows for spatially varying potentials, and CQL does not.
BACONT1 uses a 9-point operator and a fully implied ICCG solution; CQL does a
more accurate differencing along separatrices which leads to more than a
9-point operator, and a splitting scheme is used for solving the matrix
equation. BACON11 has a simple rf diffusion model, and CQL's rf model is



quite sophisticated. Another code which solves the same types of problems i
the SMOKE code of Matsuda and Stewar‘t.5 This is a finite element code which
allows multiple phase space regions and includes relativistic effects.

IT. FOKKER PLANCK EQUATION

A. Local Fokker-Planck Equation

The local Fokker-Planck equation for species "a" can be written as
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where v, 8 are local spherical coordinate velocity variables at the axial
position s, and S is a source term. In this section, only the collisional
contribution to fa is considered; Sec. IV discusses the inclusion of rf.

Following the notation of Mirin,2 the collisional flux can be written as
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The Rosenbluth potentials can be written as
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Here the sum over b includes all charged species present. The actual
potentials gy, and hb are solutions to
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b b
where fb is the distribution function of species b. The species density is
_ 3

Ny = Ifb d-v.

Note that Refs. 1 and 2 use the potential Hy instead of I, which is

2 - - ..

related to Ia and Ga by v Ga 2(Ha Ia). The coefficients Aa and Da can

be written more simply using Ia, and only first order derivatives of Ia are
required. The different expressions of Aa and Da obtained using Ia or Ha

are analytically equivalent and numerically equivalent if the Legendre expansion
is used to solve for 9y and hb as is done here. However, if other numerical
schemes are used to solve for g, and hy, the use of I could be numerically
more accurate.

The code is currently set up to treat the interaction between one ion
species and one electron species, and the distribution of only one of these
species is actually computed. If the species being solved for is ijons, the
electrons are assumed to have an isotropic Maxwellian distribution. In this



case g, and he are independent of pitch angle 6. If the species being solved
for is electrons, the ions are assumed to be infinitely massive, causing only
pitch scattering of the electrons. Then, the only ion potential which
contributes is 9y = MyVs Ny being the ion density. This term in turn only
influences the pitch angle coefficient Fe.

The Rosenbluth potentials for the computed species are obtained by
expanding the distribution function in Legendre functions. This is described

in detail in Ref. 1 and 2, and the reader is referred there for further
information.

B. Bounce-Averaged Fokker-Planck Equation

Using the assumption that collisions only weakly influence the orbit of
a particle over its axial bounce orbit, Eq. (1) can be bounce averaged giving
the evolution of the midplane distribution function
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where (vo, 60) are midplane coordinates. The source term S has been omitted
since it is unchanged from that of Cutler et a].] The bounce time Tg is
_ ds
B~ PVvcosd - (14)
The particle orbits are defined by the equations for conservation of energy
and magnetic moment:
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Here vp = ZZa e¢>(s)/ma and y = B(s)/BO; ¢ is the electrostatic potential and
B is the magnetic field. In converting Eq. (13) into a useful form in midplane
variables, we need the transformations
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Using Eqs. (15-18), Eq. (13) can be transformed into
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where the bars denote the bounce-averaged coefficients whose units differ from
the local coefficients by a length dimension:
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The required derivatives are obtained from Eqs. (17) and (18). Note that
Eq. (19) is in the desired conservation form for the line density, NL’ given by

N, =j-er0 cos 8 f, d3v0 . (26)

The numerical procedure used to evaluate the bounce-average coefficients is

described in Ref. 1. For vp = 0, these coefficients reduce to those in Ref. 3.

IIT. NUMERICAL PROCEDURE

A. Finite Difference Equation

Equation (19) is written in finite difference form on a (60, vo) mesh

with the indices (i, j) as described in Ref. 2 except that an implicit scheme
is used, i.e., the RHS is evaluated at the advanced time. Specifically

R £n
i’j 1’\] = ] [ ] (Jn+] ) Jn+'| )
At ty v cos 6, [ AVj \Ta3*1/2 7 71,3172
J i
1 n+l n+l
¥ 8o, sin 6, (Ki+]/2,j - K1-1/2,j>] (27)

+ .
where the superscript denotes the time level, i.e., tn ] = tn + At. The grids

run from j = 2 to j = jm and i = 2 to i = im with 1m corresponding to
6 =n/2 -8&. A "ghost" grid point is placed at 6 = 7/2 + 6§ to aid in
implementing the n/2 boundary condition; & = Aeim/z‘ Unlike in the original

code, the n/2 grid point is not used. The grid quantities are

Av‘].ﬂ/2 = i(vjt1 - Vj)’ Avj = 0.5 x (Avjﬂ/2 + Avj_]/z) R

and 6 quantities are defined similarly. The J's are
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where the diffusion coefficients (i.e., A etc.) are obtained using the current
value of f = f" in Eqgs. (11-12), but the explicit f's are evaluated at the
advanced time step, i.e., f » fn+]. Also,
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The original version of the bounce-averaged code1 used a splitting scheme
T
implemented a fully implicit 9-point difference operator which was solved by
Incomplete Cholesky Conjugate Gradient (ICCG) method. Although we now have a
different form for the bounce-averaged Fokker-Planck equation, the same
9-point ICCG algorithm developed by Cutler can be used. The current version
of the code uses a similar ICCG algorithm developed by Shestakov and
Anderson.6

as described in Ref. 2 for solving for f Subsequently, Cutler

The 9-point operator form of Eq. (27) is

Fl_en
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The nine coefficients are
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and the factor r = 1/(TB vg cos 91).

B. Boundary Conditions

The boundary conditions are implemented in much the same way as described

by Mim‘n2 with a few differences owing to the implicit scheme used here. The

analytic boundary conditions are

falViaxs8) = 0 (36)
Bfa(O,G) _ ;
—4——=0 (37)
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and
Bfa(v,n/Z)
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Also, along any loss boundary we have fa = 0.
Numerically, Eqs. (37) to (39) are satisfied by imposing a zero flux
condition across the boundaries. For Eq. (37) at v = 0, this yields

T ntl = n+1 n+1
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Because of the last term, we cannot use Eq. {40) directly and maintain the
implicit 9-point difference scheme. By referring to Eq. (27), note that
J1,3/2 = 0 can be satisfied approximately by setting the sum of the first two
terms in Eq. (40) to zero and adding an explicit source-like term Sbj’ to the
RHS of Eq. (27) which cancels the third term in Ji,3/2' These two steps yield
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Because of the explicit term Sbj’ zero flux is not strictly maintained until
steady state. If desired, this defect can be remedied by a more elaborate
boundary condition. The effect which Eq. (41) has on the 9-point operator of
Eq. (30) are the transformations
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and a(i,2,2,-1) » 0.

In just the same manner, the boundary condition at i = 2 requires
Kn+1
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and an explicit source term
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Equation (43) is used to redefine a(2,j,0,m) and a(2,j,-1,m).

The boundary condition at 6 = n/2 is obtained by using a "ghost" grid
point at 6 = /2 + § termed the i = I + 1 theta grid point; the i = I grid
point has 6 = n/2 - §. Using symmetry about 6 = 1/2 then gives f and the
diffusion coefficients at the “ghost" grid point

f = f

1+41,i - 1,3
Drey,5° - 01,5
ST

These relations yield K?:;/Z j = 0 and thus result in no flux crossing the

8 = m/2 boundary.

C. Computing the Line Flux

A useful diagnostic is the line flux across the loss boundary or across
the boundary separating a fixed distribution from one which is evolved in

-10-



time. The line flux per unit velocity is obtained by integrating the RHS of
Eq. (27) over the confined region of velocity space which leaves just the
boundary terms

e f

confined

—
It

3 .
deO Tg Vj cos 60 sin 60 RHS(27)

8 <+ :g: 46 sin 6 Ji,jbyi]/Z/Avjby - Kiby+1/2,j) . (45)

Here jby is the value of j along the boundary in the 8 direction, and iby is
the value of i along the boundary in the v direction. One uses the upper
jby (0) to
shows the flux as a function of velocity. The

(Tower) sign in Eq. (45) if the confined region extends from v
o (ijy)' A plot of Fj VS vy
total flux is

I‘T=ZI’.AV. . (46)
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The contributions to the flux from collisional and rf diffusion are separated
and plotted on the same frame in the code output to enable comparison. The
total flux aids in confirming that particle balance is maintained to a high
degree of accuracy.

IV. RF CYCLOTRON HEATING

The code also includes diffusion due to rf cyclotron heating. We assume
that the heating occurs in the velocity direction perpendicular to the
magnetic field. Thus, a new term is added to the RHS of Eq. (1) of the form

afa afa ) 3 Bfa
L E + v cos 6 s S v oo VI Drf v + collisional terms
1 1 1
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where the rf diffusion terms are

2 .2
Brf = v sin 8 Drf

Crf = v sin @ cos ® Drf

E =y in2 6 cos8 D
rf S cos rf

F _=sins cos2 g6 D (48)
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The bounce-average coefficients are obtained by inserting the local
coefficients into Egs. (21), (22), (24), (25).

Up to this point, the form of Drf has been unspecified. We use a model
given by Rensink7

20
X
(1 + xf)B

Drf =D

0 r exp(— [(Br - B)/ABr]Z) (49)

AB . VT

where B is the magnetic field, X = vl/vn, and o and B are specified by the
input. Normally, AB. is taken as small to localize the resonance spatially to
simulate cyclotron heating. If Drf has no explicit velocity dependence

(0 =B = 0), it models fundamental cyclotron heating (w = wc) for small
perpendicular wavenumber klvt/mC << 1 where v, = /2T/m is the thermal velocity.
For AB/Br << 1, there is a simple relation between D0 and the power absorbed on
one side of the midplane:

Power absorbed = 2nm D0 LB A . (50)

Here n is the local density, LB the local magnetic scale length, A the area, and

mDy (= EMDRF in the code) is the value of the diffusion coefficient in keV/s.
Heating at higher cyclotron harmonics can be modeled by choosing

o =% - 1, where £ is the harmonic number yielding the resonance w = ch.

For £ = 2 and klvt/wC << 1, the normalization velocity is Vo = Ve w/kl. The

diagnostic in the code which gives the rf power out [Eq. (50)] is correct only

for & = 1, but can be corrected for £ = 2 and kLVtADC << 1 by multiplying the

power by (klvt/auc)z.
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V. SUMMARY AND ACKNOWLEDGMENTS

This report describes the conversion of the bounce-averaged
Fokker-Planck code of Cutler et a].] to conservation form. The new code has
been tested on several different problems with the SMOKE code5
well. A new diagnostic has been added which allows calculation of the flux
across loss boundaries. This is used to confirm that the line density is

and agrees

conserved to a high degree of accuracy--typically better than one part in

105. The effects of a time varying magnetic field, the so-called B

terms,1 have not been included in the conservation form as of this writing.
This project has benefitted by help from a number of people. Linda

LoDestro and Marv Rensink have taken time to explain the details of the code.

Bob Campbell has added finite transit losses and a new version6 of the ICCG

algorithm. Ray Jong and John Stewart have provided test case runs from SMOKE

for comparison, and Art Mirin has tutored me on numerical conservation.

Archer Futch pointed out an implausible result from an earlier version of this

code which lead to the identification of a bug.
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